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ABSTRACT: YM-216391, an antitumor natural product, represents a new class of cyclic peptides containing a polyoxazole-
thiazole moiety. Herein we describe its gene cluster encoding the biosynthetic paradigm featuring a ribosomally synthesizing
precursor peptide followed by a series of novel posttranslational modifications, which include (i) cleavage of both N-terminal
leader peptide and C-terminal extension peptide and cyclization in a head-to-tail fashion, (ii) conversion of an L-Ile to D-allo-Ile,
and (iii) β-hydroxylation of Phe by a P450 monooxygenase followed by further heterocyclization and oxidation to form a
phenyloxazole moiety. The cluster was heterologously expressed in Streptomyces lividans to bypass difficult genetic manipulation.
Deletion of the ymR3 gene, encoding a putative transcriptional regulator, increased the YM-216391 yield about 20-fold higher
than the original yields for the heterologous expression of wild-type cluster, which set the stage for further combinatorial
biosynthesis.

The five-atom heterocycles, including thiazolines and
oxazolines and subsequent oxidation products thiazoles

and oxazoles, are a recurring motif in nature’s medicinal
chemistry toolbox of bioactive natural products.1 Biosynthesis
of the heterocycles involves heterocyclization and dehydration
of X-Cys, X-Ser, or X-Thr dipeptide moieties to form
thiazolines or oxazolines and then oxidation to thiazoles and
oxazoles. This process includes two types of enzymatic
strategies: nonribosomal peptide synthetase (NRPS) or
posttranslational modification of a ribosomally synthesized
prepeptide.1,2 The conversion of X-Cys to thiazole moiety of
epothilone and bleomycin was characterized as a NRPS based
modification by the cyclization (Cy) domain and oxidation
(Ox) domain.3−5 Recently, the biosynthesis of heterocycle-
containing natural products with ribosomal peptide frameworks
has been actively pursued, including goadsporin,6 cyanobac-
tins,7 streptolysin S,8 thiopeptides,9,10 and plantazolicins.11,12

Generally speaking, this type of posttranslational modification
involves several proteins/domains, including (i) a zinc-binding
cyclodehydratase, (ii) an ATPase/GTPase likely docking
protein, and (iii) a FMN dependent oxidase.2

As a novel family of heterocyclic natural products, the
macrocyclic peptides containing highly constrained tandem or
multiple heterocycles are always interesting to medicinal
chemistry and biosynthetic studies.1 Recently, an unusual
polyoxazole-thiazole-based cyclopeptide, YM-216391 (Figure 1,
1), was isolated from Streptomyces nobilis.13,14 Structurally, this
24-membered macrocyclic system is characterized by a
continuum of five azoles linked via a Gly-Val-D-allo-Ile
tripeptide tether, shares homology with the marine anticancer
natural products urukthapelstatin A (Figure 1, 2)15 and
mechervharstatin (Figure 1, 3),16 and is similar to the potent
telomerase inhibitor telomestatin (Figure 1, 4).17 The structure
was assigned on the basis of NMR data, absolute configuration
of the amino acid residues was determined by Marfey’s
analysis,14 and the complete stereochemistry was further
confirmed by total synthesis.18,19 YM-216391 dose-dependently
inhibited the growth of human cervical cancer HeLa S3 cells
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with an IC50 value of 14 nM. It also showed potent cytotoxic
activity against a human cancer cell line panel, and the mode of
action remains to be investigated.13 The unique structure,
potent biological activity, and unprecedented mechanism have
drawn considerable interest to further development of this class
of natural products as potential anticancer drugs. However,
until now little has been known about the biosynthesis of this
family of sequential oxazoles containing macrocyclic peptides,
so it still remains elusive to answer the question of whether this
type of constrained tandem heterocycles arises from NRPSs or
by the posttranslational modification of a ribosomally
synthesized prepeptide.
To understand which biosynthetic process is used to

construct the polyoxazole-thiazole-based framework of these
macrocyclic peptides, we have undertaken the cloning of
biosynthetic gene cluster of YM-216391 through genome
scanning. The genomic DNA of producer S. nobilis was
subjected to 454 sequencing, which yielded 9.29 Mb of
consensus sequence. Bioinformatic analysis permitted the
identification of a gene (assigned as ymA) encoding a 36-
residue protein containing the F-I-V-G-S-S-S-C amino acid
sequence at the middle region, which is identical to that
predicted for the peptide core of YM-216319 (Figure 2). This
finding suggested YM-216391 is most likely biosynthesized by a
ribosomal process. To further prove that this gene cluster is
necessary to YM-216391 production, a cosmid pTG1101 based
on pJTU2554 vector20 containing this DNA region was
identified through library screening, followed by transformation
of S. lividans 1326 by conjugation to obtain the heterologous
expression strain S. lividans TG1101. The analysis of the
metabolite accumulated by this mutant was performed by
HPLC and LC−MS with S. lividans 1326 harboring pSET152
as control, which revealed that the production of YM-216391
absolutely depended on the cosmid pTG1101 (Figure 3I,II).
The fraction of corresponding target was collected and further
subjected to analysis by high-resolution MS, which yielded (M
+ H)+ and (M + NH4)

+ ions at m/z = 697.2174 and 714.2442
(Supplementary Figure S1), consistent with the molecular
formula C34H32N8O7S of YM-216391 [calculated 697.2193 for

(M + H)+ and 714.2458 for (M + NH4)
+]. These results

suggest that this gene cluster surrounding the ymA gene is
necessary for the biosynthesis of YM-216391. Further sequence
analysis of this region revealed 14 ORFs (Figure 2a and Table
1), from ymI to ymR4, which were proposed to constitute the
YM-216391 gene cluster according to functional assignment of
their deduced products.
YmA, a 36-residue prepeptide, shows no sequence homology

in the data bank. The first 13-residue with MTAEIEEVDIEVG
amino sequence of the prepeptide is proposed to serve as a
leader sequence for processing, which is rich in acidic amino
acids Asp (D) and Glu (E) but without a double Gly motif.21

However, the prepeptide also contains an 18-residue C-
terminal extension with SLELEEDDLDVAADE amino se-
quence likely for recognition, which is richer in acidic amino
acids Asp and Glu. So this prepeptide is a highly acidic protein
with a calculated pI of 3.17 and contains 46% of acidic amino
acids in the N-terminal leader sequence and C-terminal
extension that need to be removed during the maturation of
final product (Figure 2b).
Biosynthesis of the polyoxazole-thiazole-based framework is

one of the most remarkable processes of this family of natural
products. Two genes, ymD and ymBC, encoding a docking
protein and a cyclodehydratase-oxidase didomain enzyme, were
assigned responsibility for conversion of the G-S-S-S-C into
Gly-oxazole-oxazole-oxazole-thiazole moiety (Figure 2b). YmD,
con t a i n i n g a c on s e r v ed P ro - r i c h C t e rm inu s
(PDPHPFPHPLP), is a YcaO-like protein found in many
bacteriocin biosynthetic pathways as a docking protein with
ATPase/GTPase activity.8,22 YmBC is a 492-residue protein; it
contains a C-terminal domain with NADPH and FMN binding
motif and shows sequence homology to the oxidase domain of
epoB, the NRPS of the epothilone biosynthesis pathway.4,5 The
N-terminal half of YmBC does not include any obvious motif
and shows no sequence homology in the data bank. Further
analysis for this domain allowed the identification of two
groups of CxxC motifs (CLGC and CRWC), which are
invariant elements comprising a zinc-tetrathiolate for the
cyclodehydratase.8,23 Previously, biochemical characterization
of microcin B17 biosynthesis showed that the multiple
heterocycles are generated by a zinc-binding cyclodehydratase
McbB, a docking protein McbD with ATPase activity, and a
FMN dependent oxidase McbC.22−25 Recently, the biosyn-
thetic studies of goadsporin,6 cyanobactins,7 and thiopep-
tides9,10 revealed that the cyclodehydratase and docking protein
are fused into one protein, while in a widely distributed toxin
biosynthetic pathway, either three separated enzymes or two
enzymes (oxidase and fused cyclodehydratase-docking protein)
are present.8 However, in the biosynthesis of YM-216391, the
zinc-binding cyclodehydratase and the FMN-dependent oxidase
are fused together as a two-functional enzyme and the docking
protein as a monofunctional discrete enzyme.
The analysis of YM-216391 gene cluster indicated more

tailoring steps in the biosynthetic pathway. A cytochrome P450
monooxygenase, encoded by ymE, containing a typical heme
binding motif FGGGRRSCPG, may be a candidate enzyme for
β-hydroxylation of Phe. The P450 oxygenases for β-
hydroxylation usually bind the amino acid substrate either
free in solution or covalently linked to the peptide carrier
protein (PCP) domain of NRPS as aminoacyl-S-PCP.26,27 In
the biosynthetic pathway of YM-216391, the β-hydroxylation of
Phe most likely occurred in the prepeptide stage after the
formation of polyoxazole-thiazole moiety (Figure 2b). In

Figure 1. Structures of YM-216391 and related natural products.
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addition, the conversion of L-Ile to D-allo-Ile was also proposed
in this stage, possibly catalyzed by YmG and YmH, although
the order of these two modification steps remains to be
determined experimentally (Figure 2b). The YmG enzyme is
similar to aminomutase but without radical SAM binding motif
CxxxCxxC. It contains Cys47 and Cys123, possibly functioning
as the catalytic acid/base residues for deprotonation/proto-
nation of the cofactor-independent amino racemases,28

although they do not show the obvious sequence homology.
Bibb and co-workers identified the biosynthetic gene cluster of
L-allo-Ile containing cypemycin and proposed CypI as a
candidate isomerase.29 However, any gene products including
YmG found in the YM-216391 gene cluster show no homology
with CypI. YmH does not share the obvious homology to the
known enzymes and is proposed to be functionally related to
YmG because the two genes are translationally coupled for their
overlapping stop and start codons. Although D-allo-Ile residues
also were identified in the cyclic peptides aerucyclamides from
cyanobacterial,30 the epimerase responsible for the conversion
of L-Ile into D-allo-Ile still remains to be explored.

Another important step of ribosomal peptides biosynthesis is
excision of the N-terminal leader peptide and C-terminal
extension and concomitant cyclization. YmF, though it does not
share the obvious homology to the known proteases,31,32 is
supposed functionally similar to cleave β-hydroxylPhe-D-allo-
Ile-Val-Gly-oxazole-oxazole-oxazole-thiazole out of the full-
length precursor at both N- and C-termini, followed by N−C
terminal cyclization (Figure 2b). The high percent of acidic
amino acids (46% of D/E) in both N-terminal leader sequence
and C-terminal extension requires an alkaline protease to bind,
recognize, and then catalyze the amide bond hydrolysis
reaction. YmF is the only candidate enzyme with calculated
pI of 8.68 except for another alkaline protein, YmBC (with
calculated pI of 8.99), which was already assigned as
cyclodehydratase-oxidase for the formation of polyoxazole-
thiazole moiety. YmI, a hypothetical protein belonging to the
cupin family, cannot be assigned function on the basis of only
the sequence analysis. This formation process of cyclic peptide
may be similar to the split intein circular ligation model33 but
requiring YmF and/or YmI assistance, while the enzymatic
mechanism needs to be further investigated.

Figure 2. Biosynthetic pathway of YM-216391. (a) Organization of gene cluster. (b) Proposed model for the biosynthesis of YM-216391.
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The final step in YM-216391 maturation is the hetero-
cyclization of thiazole-β-hydroxylPhe and further oxidation to
form a thiazole-phenyloxazole moiety. Two genes, ymB1 and
ymC1, encoding a cyclodehydratase and an oxidase, are likely
responsible for formation of this special five-atom heterocycle
(Figure 2b). YmB1 does not keep the conserved CxxC motifs,
which usually exist in the cyclodehydratase as zinc-binding sites
using prepeptide as substrate, but contains two nearby DxxE
sequences (DLGE and DNPE), a known metal-binding motif.
This type of special cyclodehydratases has been mentioned as
an exception in the analysis of toxin biosynthetic cluster.8

YmC1 shows weak homology to the FAD-binding mono-
oxygenase, which just fit the request of oxidizing phenyloxazo-
line into phenyloxazole. Compared to the classical three-
component system McbBCD25 and recently characterized
heterocyclization in cyanobactin biosynthesis,34 the special
two-component cyclodehydratase-oxidase system proposed
here requires neither a leader peptide nor a C-terminal
extension for recognition, which provides an opportunity to

explore a potentially different enzymatic system to do the
similar chemical process.
The difficult genetic manipulations in recalcitrant endoge-

nous producer and poor, unstable production of YM-216391
hinder the further investigation in a native producing strain (S.
nobilis JCM 4274), and heterologous expression has to be used
to bypass these obstacles. Although we successfully transferred
the gene cluster into the model host S. lividans 1326 and
achieved approximately 176 ± 115 μg/L yield of compound,
more efforts are still required to improve the titer of YM-
216391 for further combinatory biosynthesis. Recently, several
successful cases about improvement of secondary metabolite
production by manipulating pathway-specific regulators35

inspire us to characterize the putative regulatory genes in
YM-216391 gene cluster. Two genes, ymR1 and ymR2, encode
putative regulatory proteins belonging to AraC family and Mar
family transcription regulator, respectively. We then replaced
ymR1 and ymR2 with flippase recognition target (FRT) scar
using λ-Red-mediated recombination and got the resulting
cosmid pTG1102 (ΔymR1) and pTG1103 (ΔymR2), respec-
tively (the identification of genotype in Supplementary Figure
S2). Conjugative transfer and expression of pTG1102 in S.
lividans failed to produce YM-216391, while the recombinant
strain S. lividans TG1103 containing pTG1103 still yielded the
product with an obviously decreased level (Figure 3III,IV).
However, when we delete ymR3, encoding a protein showing
high similarity to a hypothetical protein with unknown function
and moderate sequence homologous to the 4-oxalocrotonate
tautomerase, the resulting heterologous expression strain S.
lividans TG1104 [harboring cosmid pTG1104 (ΔymR3)]
produced YM-216391 up to a yield of 3.84 ± 0.80 mg/L
(Figure 3V). This titer is 20-fold greater than the original yields
for the heterologous expression of wild-type cluster, making the
production and isolation of large amounts of this compound
vastly more efficient. Indeed, we easily isolated enough
compound from heterologous expression strain S. lividans
TG1104 and further confirmed the structure by 1H NMR and
13C NMR (Supplementary Figures S3, S4 and Supplementary
Table S1). This result suggested that ymR3 should encode a
negative regulator, and this finding underscores once again the
effectiveness of the heterologous expression and manipulating
pathway regulation to overcome genetic system and production
improvement. The last protein, YmR4, is a transmembrane
efflux protein, may contribute to resistance.
In summary, we have successfully identified a biosynthetic

gene cluster encoding the ribosomally polyoxazole-thiazole-
based macrocyclic peptide by genome sequencing and
confirmed its function by heterologous expression. The YM-
216391 gene cluster exhibits several unusual features of the
ribosomal based posttranslational modification, most remark-
ably the putative epimerases catalyzing the conversion of an L-
Ile to D-allo-Ile and a P450 monooxygenase responsible for β-
hydroxylation of Phe in the precursor peptide stage. In
addition, the precursor peptide needs to be cleaved both N-
terminal and C-terminal prepeptide and ligated in a head-to-tail
fashion. In addition to converting S-S-S-C into polyoxazole-
thiazole moiety, this biosynthetic system provides the first
example of heterocyclization and oxidation of β-hydroxyl-Phe
to form a phenyloxazole moiety. Deletion of a hypothetical
regulatory gene ymR3 from the cluster in the heterologous host
allowed us to obtain strains with production of YM-216391
increased 20-fold. The work described here thus provides a
foundation to investigate the biosynthetic mechanisms of the

Figure 3. HPLC analysis of YM-216391 production by heterologous
expression. (I) Streptomyces lividans 1326 containing plasmid pSET152
as control; (II) S. lividans TG1101 [S. lividans 1326 harboring cosmid
pTG1101 (wild-type cluster) ]; (III) mutant S. lividans TG1102 [S.
lividans 1326 harboring cosmid pTG1102 (ΔymR1)]; (IV) mutant S.
lividans TG1103 [S. lividans 1326 harboring cosmid pTG1103
(ΔymR2)]; (V) mutant S. lividans TG1104 [S. lividans 1326 harboring
cosmid pTG1104 (ΔymR3)]. (▼) YM-216391 (1); (∇) an unknown
metabolite whose production is independent of YM-216391 biosyn-
thesis.
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novel posttranslational modification of a ribosomally synthe-
sized prepeptide and also sets the stage for engineering the
pathway for novel analogues to develop useful anticancer drugs.
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